Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction.
نویسندگان
چکیده
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution.
منابع مشابه
Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation.
RATIONALE Epidemiological evidence indicates that exposures to fine particulate matter air pollution (PM2.5) contribute to global burden of disease, primarily as a result of increased risk of cardiovascular morbidity and mortality. However, mechanisms by which PM2.5 exposure induces cardiovascular injury remain unclear. PM2.5-induced endothelial dysfunction and systemic inflammation have been i...
متن کاملDietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers.
BACKGROUND Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. OBJECTIVE In this study we evaluated the potential efficacy of OO and FO in mitigating endothelial dysfunction and disruption of hemostasis caused by exposure to particula...
متن کاملThe effect of air pollution on haemostasis.
Ambient environmental air pollutants include gaseous and particulate components. In polluted air, especially particulate matter seems responsible for cardiovascular complications: It consists of a heterogeneous mixture of solid and liquid particles with different diameters ranging from large thoracic to ultrafine particles, with a diameter <100 nm. Ultrafines can penetrate deeply into the lung ...
متن کاملAmbient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells.
Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active inves...
متن کاملHealth Risk Assessment for Air Pollutants: Alterations in Lung and Cardiac Gene Expression in Mice Exposed to Milano Winter Fine Particulate Matter (PM2.5)
Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2008